Extra Practice Problems

UCB

August 13, 2025

1 Problem 1

Consider $(0,\pi)$ and the functions $\phi_k = \sqrt{\frac{2}{\pi}}\cos(kx)$, $\phi_0 = \sqrt{\frac{1}{\pi}}$. Show that ϕ_k gives an orthonormal basis for $L^2((0,\pi))$ as follows:

Part A) Show that the ϕ_k are orthonormal.

Part B) Let $f \in L^2((0,\pi))$ be such that $\int_0^{\pi} f \cos(kx) dx = 0$ for all k. Extend f to an even function on $(-\pi,\pi)$. Then, what is $\int_{-\pi}^{\pi} f(x)e^{ikx} dx$?

Part C) Recall that $\{e^{ikx}\}$ is a basis. What must f be? Conclude $\{\phi_k\}$ is a basis for $L^2((0,\pi))$.

2 Problem 2

Consider

$$I[w] = \int_0^\infty \int_{\mathbb{R}} \frac{1}{2} \left[(\frac{\partial u}{\partial t})^2 - (\frac{\partial u}{\partial x})^2 \right] dx dt$$

Show that $u(t,x) \in H_0^1([0,\infty) \times \mathbb{R})$ is a stationary point of I[w] iff. it is a weak solution to the wave equation

$$\begin{cases} (-\partial_t^2 + \partial_x^2)u = 0 & (0, \infty) \times \mathbb{R} \\ u(0, x) = g(x) \\ u_t(0, x) = 0 \end{cases}$$

3 Problem 3

Show that $\frac{d}{dx} \ln |x| = \frac{1}{x}$ for $x \neq 0$ as a distributional derivative as follows: **Part A**)

$$\langle \ln |x|', \psi \rangle = \int_{-\infty}^{\infty} -\psi'(x) \ln |x| dx = \lim_{\epsilon \to 0} -\int_{|x| \ge \epsilon} \psi'(x) \ln |x| dx$$

Integrate by parts on each branch.

Part B) Show that $\lim_{\epsilon \to 0} [\psi(\epsilon) - \psi(-\epsilon)] \ln(\epsilon) = 0$ (Hint, try to use the definition of the derivative of ψ at 0 to help).

Part C) Conclude $\langle \ln |x|', \psi \rangle = \lim_{\epsilon \to 0} \int_{|x| \ge \epsilon} \frac{\psi(x)}{x} dx$ (Notice that this only works because the limit is taken symmetrically).